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Abstract

Pattern simulations for three-beam and six-beam X-ray
diffraction are presented using multislice calculations
based on Moodie & Wagenfeld’s formulation of the
X-ray equations, which factorize Maxwell’s equations
into Dirac format, using circular-polarization bases. The
results are presented in three forms: one-dimensional
rocking curves, Pendellosung thickness fringes, and
convergent/divergent-beam patterns of single-diffrac-
tion orders, using experience gained from CBED
(convergent-beam electron diffraction) and LACBED
(large-angle CBED) techniques developed for high-
voltage electron diffraction transmission patterns. This
latter and quite new technique displays the results in the
most compact form. The acronym DBXRAD (diver-
gent-beam X-ray diffraction) is used for these patterns.
The optics required for these patterns has only recently
become available for radiations up to Mo Ko in energy
and for limited angular divergences, but with capillary
focusing currently undergoing rapid development these
limits are likely to be extended. However, these
simulations define critical angular ranges within reach
of current designs. Simulations for light- and heavy-atom
structures belonging to the enantiomorphic space-group
pair P3,21 and P3,21 provide clear evidence of chiral
interaction between radiation and structure, highlighting
divergences from the use in structure analysis of the well
studied CBED pattern symmetries. Mo Koy and Ta Koy
wavelengths were used to minimize absorption for the
two structures studied, an important factor owing to the
large thicknesses (up to 20 mm) required.

1. Introduction

In making comparisons with high-energy electron
diffraction (HEED), for which spin interactions may be
neglected, for X-ray scattering, even with the simplest
classical model of atomic scattering from a dipole
oscillator, vectorial, or for three-dimensional transmis-
sion, tensorial fields are basic. Rather than regarding
this as a nuisance, our aim is to show how this may be
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used to advantage in solving three-dimensional struc-
tures and in tackling the ubiquitous phase problem in
X-ray diffraction. For a detailed description of the
implementation of the Moodie & Wagenfeld (1975)
equations in multislice format, the reader is referred to
the earlier studies of Patterson, Davis & Goodman
(1999) where tests on Si and one-dimensional polar
compounds having the ZnS structure are given. The
basic idea behind our calculations is to regard both
momentum and circular polarization states of the
photon as changed by scattering, so, for a three-beam
interaction based on a reciprocal-space triangle, two
coupled triangles are envisaged, coupled according to
the diagram of Fig. 1. As seen, paths between polariza-
tion states not involving a momentum change are
forbidden (dashed lines).

In the present paper, this method is taken a step
further in specifically looking at chiral structures. It has
long been debated as to whether any measurable effects
could occur at X-ray wavelengths commonly used in
structure analysis resulting from a chiral interaction
between photons of X-ray wavelengths, comparable
with the well known observations made routinely with
visible light known as ORD and CD (optical rotary
dispersion and chromatic dichroism), representing the
real and imaginary — or absorptive — components of
refractive index. These established optical techniques
allow determination of handedness in single molecules
or in crystal structures belonging to triclinic space
groups such as P2, the most commonly found symmetry
in protein structures. Although these same effects may
be eventually demonstrated for harder radiations, the
computational program required in the X-ray case is
much more complicated than that commonly used in
electron microscopy, requiring 360° scattering (the
Laue-Bragg condition) to be implemented. As a first
step, and perhaps of more fundamental interest in
crystallography, is that of distinguishing enantiomorphic
space-group pairs, the one remaining problem in space-
group determination for X-ray diffraction not yet solved
even by the Bijvoet method (Peerdman et al, 1951;
Bijvoet et al., 1951).
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In the present case, choice of wavelength is critical.
For structures consisting of light atoms only, softer
X-rays such as Cu Ko, may suffice, but as the atomic
number increases so too does the radiation energy
required to produce observable dynamic effects without
introducing too great an absorption. We have found that
the structure-dependent absorption, the so-called
‘anomalous’ absorption, plays an important role in the
overall required dynamic interaction, only the average
or zero-order absorption term not contributing to
structural distinction and becoming a major factor to be
considered in obtaining useable intensities from thick
crystals.

From the well tabulated atomic scattering factors,
Mo Ko, and Ta Ko, wavelengths were chosen for the
above reasons in the computations for the two structures
a-quartz and Oss(CO) g, respectively.

Earlier, wedge-shaped crystals had been used to study
the effect of polarization scattering in two-beam X-ray
transmission on an unpolarized incident beam (Hart &
Milne, 1968), using a Lang camera (Lang, 1962), which
involves a moving table holding a wedge-shaped crystal,
the results for one diffraction order being recorded as a
function of thickness. Then, Hart & Lang (1965)
observed the periodic fading and re-emerging of
Pendellosung fringe amplitude with thickness, arising
from the beating of the two frequencies expected from
the two independent linear polarization states o™ and
o, using wedge-shaped crystals of Si and Ge. Following
this, observations were made using linear polarized
radiation incident at 45° to the two-beam scattering
vector so that equal amounts of o- and m-state radiation
coherently related formed the input beam (Skalicky &

Fig. 1. The two three-beam momentum-scattering diagrams for
circularly polarized X-rays, connected by allowed scattering paths
to the opposite polarization state. Dashed lines represent forbidden
paths, since polarization state cannot change without a scattering
event. Beams collectively labelled 0, g and & represent reciprocal-
lattice points that are split into o™ and o~ states, denoted by filled
and unfilled circles, numbered from 1 to 6 as shown.
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Malgrange, 1972). These authors found that a periodic
beating could be observed with a polarizer only in the
incident beam. This observation immediately suggested
that treatment of the whole scattering as two sets of
coupled harmonic oscillators could greatly simplify
future analyses of Laue-case fringes, an analysis in which
the beating is treated by considering both momentum
and polarization states as taking part in a coupled
coherent system. This layout of the problem then allows
simple extension to N-beam coupling with N > 2, the
simplest being the three-beam case. This is the smallest
N interaction in which the structure phases play a part.

The direct factorization of the whole transmission
case as coupled equations for left and right circular
polarization states (Moodie & Wagenfeld, 1975) then
invited consideration of these cases, with the additional
interest of exploiting the behaviour of circularly polar-
ized states.

Until quite recently, however, an experimental
method sufficiently sensitive to directly observe such
weak effects as the chiral interaction between beam and
structure from a simple diffraction experiment was
lacking. The recent development and testing of capillary
optics on a synchrotron source, which showed that a
capillary focus could be used to produce divergent-beam
elastically scattered diffraction orders using synchrotron
radiation (Thiel et al, 1989; Engstrom et al., 1991;
Bilderback et al., 1994; Balaic et al., 1996), prompted a
fresh look at the Wagenfeld & Moodie equations, to
examine the order of magnitude of three-dimensional
X-ray scattering interactions of structural interest. The
advantage of capillary optics is that, in principle, all the
three-dimensional data could be collected from a single
CBXRAD pattern from a single diffraction order. This
concentration of incident energy into one pattern should
help overcome the loss of energy in using both a
polarizer (not necessary for synchrotron radiation) and
an analyser in the detector path.

It may have been forgotten, or never properly
appreciated, that prior to the Wagenfeld-Moodie
publication (Moodie & Wagenfeld, 1975), the factor-
ization of Maxwell’s equations in Dirac-equation form
was considered viable only for vacuum-state propaga-
tion (e.g. Sakurai, 1967), although there had been some
theoretical effort put into presenting Maxwell’s equa-
tions in spinor form for visible light (Hillion, 1979), but
even there the accurate solution presented applies only
to a medium of constant refractive index. However, with
use of the multislice method, which treats the three-
dimensional problem as a series of projected-structure
phase gratings of zero thickness, and where all the
propagation is in the vacuum state (Goodman &
Moodie, 1974), it is made clear that this treatment is
valid also in diffraction through a finite and periodically
modulated refractive medium. Given that X-ray scat-
tering amplitudes are an order-of-magnitude weaker
than their electron-scattering counterpart, for which the
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multislice method has already been thoroughly tested,
the multislice treatment can be assumed to be very
accurate for X-rays when fractional unit-cell slices are
used, even for the heaviest atom.

2. Nomenclature

It is appropriate here to outline the differences adopted
in X-ray and electron diffraction literature in their
theoretical developments. Since the broad principles
involved in the two subjects are the same, it is largely
historical developments that have lead to independent
formulations and nomenclature. This section may also
be timely, since the most recent review by Weckert &
Hiimmer (1997) of multiple-beam X-ray diffraction uses
the standard eigenvalue treatment for Maxwell’s equa-
tions and deals almost exclusively with the determina-
tion of absolute configuration in organic compounds
whose heaviest atom is nitrogen, and for as-grown
crystals of 0.1 to 0.5 mm, and they are able to distinguish
between use of anomalous absorption and use of three-
beam interference as separate methods. With thick
heavy-atom structures, this distinction is no longer
possible; both phenomena are involved, and it is
important that the anomalous-absorption coefficients
for the atoms concerned be known to high accuracy.

For the present paper, we need to write the X-ray
equations in the same form as the electron diffraction
equations, and for this we propose a nomenclature for
X-rays in the electron-equivalent form. We start by
defining the interaction constant ¢ (rather than the
normally used o, to avoid confusion with its use for
polarization state later in this paper), which, by multi-
plication with the appropriate structure factor, results in
a scattering probability per unit length. Thus, i, VhAZ
gives the kinematic (complex) scattering power per unit
length for electrons, and (), = i€, V,AZ gives the
complex scattering amplitude in the first Born approxi-
mation, requiring &, = 2/EA(1 + B2)1/? (Cowley, 1981),
with the appropriate relativistic term deriving from the
Klein—-Gordon equations. Here the electron difffraction
structure factor Vy, is expressed in volts, and AZ is the
thickness of a crystal slice. An expression for the
complete Born series in the high-voltage limit (A — 0) is
then given as v, = exp(ie,V,AZ), the ‘thin-phase-
grating’ approximation (Cowley & Moodie, 1957), which
approaches the exact solution in the limit AZ = 0. In a
similar way, i Fy, gives the kinematic (complex) scat-
tering power per unit length for X-rays, requiring that
e, = r.A/Q2, where r. = the classical electron radius and
2 is the unit-cell volume (Davis, 1994).

Then, ¥, = exp(ie, F,AZ) for N-beam dynamic X-ray
diffraction in the equivalent high-energy limit, although
the required approach to the limit AZ — 0 is reached
for much greater AZ values than for electron diffraction,
since &, > &, allowing the multislice to be used for far
greater atomic weights than is the case for electron
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diffraction. Different approximations are required for
electron and X-ray diffraction which relate both to the
much larger values of excitation error which give
significant scattering in the electron case, directly related
to the very much higher values of refractive index
encountered in HEED, and because much larger values
of 65 (the Bragg angle) prevail for X-ray diffraction, the
approximation that equates 6z to tan 0z can no longer
be applied. The expression for excitation error,
Ak, =k, — k;, in the linearized form is still applicable
since Ak < ko. However, the extinction distance, which
is only defined unambiguously for the two-beam
approximation, is given by the condition ¢, V, T = 7 for
intensity extinction, where T is the total crystal thick-
ness, and has a similar form [, =mn/¢ V, and
l, = /e F, in the two cases. The values, however, are
very different owing to reasons given above (&, > &€,).
The excitation error derived from the Ewald-sphere
construction, Ak, = tan(A6g)/d,, applies, with
[AO5/0p]x rays > [AOg/05]ciccrrons: We €xpress excitation
error values ¢, as Ak, derived from £Ak = +£¢, /tan(6;).
This is summarized in Table 1.

Treating Maxwell’s equations as a vector form of the
Schrédinger equation makes for a simpler physical
understanding as well as simpler evaluation. The stan-
dard form of Maxwell’s equations due to Lorentz does
not lend itself to simple interpretation. The Schrodinger
formulation leads naturally to Dirac-type factorization
as two coupled linear differential equations, which in
turn allows the great simplification of using the § matrix
as an operator, by-passing the need to formulate Bloch-
wave states in crystal space, which are never required
when considering elastic scattering (Heisenberg, 1944;
Sturkey, 1962; Moodie, 1972a). In dynamic X-ray scat-
tering, this comes about by Dirac-style linearization of
the second-order differential equation. The great value
of this, however, lies in the ability to interpret these
equations: Dirac’s genius allowed him to relate these
equations to electron and positron scattering; in a
parallel way, Moodie realized that for X-rays the equa-
tions represented right- and left-handed circularly
polarized states, ot and o~. In the following sections, we
use these symbols as abbreviations in referring to the
two polarization states.

3. Computed one-dimensional rocking curves for
a-quartz and Oss(CO)q6

The first technique followed is that of a rocking curve,
which may be obtained experimentally using an accurate
goniometer.

Fig. 2 shows these curves for the two isostructural
compounds «-quartz (SiO,) and Oss(CO)6, using
Mo Koy and Ta Koy, respectively. Both compounds
belong to the enantiomorphic space-group pair P3,21
and P3,21 and have three molecular groups rotated by
120° along the z axis to form a spiral. The cations (Si and
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Os) occupy the 3(a) site in w-quartz (Wykoff, 1948) and
3(a) and 6(c) sites in Os5(CO);6 (Reichert & Sheldrick,
1977). The calculations were therefore made for three
slices per unit cell, with each slice chosen to have the
cation 3(a) sites central, from which the projected
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charge density is used in a ‘thin-phase-grating’
approximation (see §2). These results are shown in Figs.
2(a) and (c). For comparison, a second calculation was
run for which one-unit-cell projections (giving the
projected symmetry p3) were run, to distinguish the

1><1o’7

8x10 "}

O ) IRl f b { .
—0.06-0.04-0.020.00 0.02 0.04 0.06

[0 SR

IR B

0.00 0.0% 0.10
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Fig. 2. Rocking curves obtained for a-quartz (upper curves) and for Oss(CO);¢ (lower curves), for the 2020 reflection in the symmetrical three-
beam case for a-quartz using Mo Ke; radiation and for Oss(CO);6 using Ta Ko radiation, respectively. Horizontal dashed lines at specific
levels are a guide to the degree of asymmetry in the curves in the subsidiary maxima about the central peak. On the right side, the curves are
simulated by the one-slice method (unit-cell projection), while those on the left side are simulated for the three-slice method, allowing chiral

interaction along the z axis to be displayed.
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Table 1. Comparison between scattering terms for dynamic electron diffraction and dynamic X-ray diffraction

Electrons
X-rays

Vi (V)
F,, (electrons)

influence of three-dimensional chirality on the calcula-
tions. These results are shown in Figs. 2(b) and (d). The
calculations here were run for 3 x 10° slices and 10°
slices, respectively. To slice through these thicknesses
within a reasonable time, a Cray computer was used.
Thicknesses sufficiently great to show the three-dimen-
sional interaction effects yet sufficiently small to prevent
overriding absorption must be chosen. This amounted to
depths of around 7 and 20 mm for SiO, and Oss(CO)4
using Mo Ko, and Ta Koy wavelengths, respectively, for
which ‘anomalous-absorption’ values x; have been
tabulated (Chantler, 1994).

Then, the left side of the diagrams in Figs. 2(a) and (¢)
show that the nonprojected chiral structures exhibit a
much greater asymmetry across the rocking curves than
do the projected structures of Figs. 2(b) and (d),
increasing as the order of subsidiary maxima increases,
as indicated by the horizontal dashed lines. Significantly,
this asymmetry is just as noticeable for SiO, as for
Os5(CO) 6, showing that it is practical to use light-atom
structures to obtain N-beam effects. The appearance of
slight asymmetry in the one-unit-cell computed curves
is due to the breakdown of the approximation
tan(Afg) ~ Aby.

g =2m/EM14+1(1— ']
& =T.A/Q

I, =m/e,V,
I, =m/e.F,

4. Presentation of results in Pendellosung form

Presentation of the results in Pendellosung form, such as
has been obtained in the past by use of the Lang camera
(see §1) using a wedge-shaped crystal, permits us to
obtain curves of diffracted intensities vs thickness, which
give us a much more quantitative idea of the effect of
chirality on intensities for different polarization states
ot and o7, and/or for the different symmetries P3,21
and P3,21. We should expect that if both are changed
(say going from o radiation with P3,21 to o~ radiation
with P3,21), there would be no change in the trans-
mitted diffracted intensities.

This proves to be the case in the calculations made.
What we are looking at is either the ability to distinguish
space groups P3,21 and P3,21 using fixed radiation
states as input and selected output (by use of a polar-
ization analyser), or to look at the effect of choosing
different o states on the same structure.

For the following wedge-shaped crystal Pendellosung
simulations, we have chosen the orientation giving an
equilateral triangle of diffraction points including the
central beam and with either the 1010, 1100 or the 2200,
2020 reflection pairs as reflections g and %, numbered

8><1o‘”_'"-u-"'iv-vv:v-'|vv--;—rﬁ_'ﬁ__~
6x1 0—11 f_ —f
axio= 11 f_ _f
10! f_ /\11\\11\1/ \:‘\:'I ‘\‘"/‘:,.“\‘"/.:\"‘/:'\"-J:'\“-/':\“'j:\.\/"‘\'-,/: \/\/ .\. _‘l“‘\‘-‘/':\". JA"A"\:.IT\‘;I': :\‘_,/;\.:\ :I:'\:'\\;i:\ _f
O: PSR S U REPAP U S SR SR Y S-S R SO S ST WU T ST ST U TH SO ST SUY gr’ :
7.55 7.60 7.65 7.70 7.75 7.80 7.85

thickness(mm)

Fig. 3. Results f_or the three-beam case, 0000, 2020 and 2200 reflections, as a function of thickness for SiO, using Mo Ka; radiation. These curves
are for the 2200 reflection, showing the difference between the projection approximation, shown as a full line, and the full calculations, shown as
broken lines. The central curves are for Ak = 0, while the upper and lower curves are for Ak values of +0.3 and —0.3, respectively.
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beams 2 and 5, and 3 and 6 in Fig. 1. We use the hkil
notation to avoid confusion when we compare the three-
beam and six-beam calculations, with defined zone-axis
coordinates [uvwl/], rather than the shortened Akl nota-
tion. Fig. 3 shows the intensity of the 2200 beam as a
function of thickness for 0" radiation incident and o~
transmitted, for the three-beam case involving 0000,
2200, and 2020 reflections for SiO, (a-quartz) using
Mo Ko, radiation. These curves show the difference
between computations for the projected structure
(central curves) and those made for the full calculations,
for Ak values of & 0.3 for the space group P3,21.

Fig. 4 shows the different orientations used in the
following work. Figs. 4(a) and (b) show the two three-
beam excitations and Fig. 4(c) the six-beam interactions
discussed.

Fig. 5 shows a calculation for Oss(CO);s using Ta Ko
radiation. Here we see the effect of changing the sign of

0220

0110

1010

1010 __
0 0000 1210

0110

O —
0110 100 1100

T(m
(a) ()

2200

0220

0000 2420

2020 6600

4220
(c)

Fig. 4. Diagrams showing the orientations used for the three-beam and
six-beam calculations. (a) Three-beam case for the {1010} reflection
set. (b) Three-beam case for the {0220} reflection set. (c) Six-beam
case, with the orientation shown, having the 0110 reflection central
in the hexagonal array.
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excitation error for Ak values of £0.1, exploring the
asymmetry in the extended dynamic shape transform as
in Fig. 3. For Oss5(CO)4, we see a much greater differ-
ence from this asymmetry identifying chiral structures,
and with a smaller deviation from 6z, enhancing the
ability to determine crystal hand. Admittedly, the
thickness regime is greater, although intensity values on
an absolute scale are not too different. Finally, six-beam
simulations were run as shown in Fig. 4(c), in order to
compare results with the three-beam simulation results.
These were run firstly for the closest in reflection 2200.
The difference found in plots for the same calculation
for the 2200 triangle computed for only three beams was
small, a slight drop in absolute intensity owing to energy
being diverted into the other four diffracted beams. We
saw from this that there is not much to be gained from a
six-beam computation, at least for the close-in reflec-
tion. However, from trial calculations for the most
distant reflection 6600, we find that much better sensi-
tivity can be gained by using small values for |Ak|, but at
the cost of much reduced intensities. These preliminary
results are therefore not given in this paper.

5. DBXRAD patterns
5.1. Methodology

Until quite recently, the optics required for the
DBXRAD technique was not available. The recent
development and testing of capillary optics on a
synchrotron source, which showed that a capillary focus
could be used to produce convergent- and divergent-
beam elastically scattered diffraction orders (Thiel et al.,
1989; Engstrom et al., 1991; Bilderback et al., 1994;
Balaic et al., 1996), however, allows us to make simula-
tions for DBXRAD patterns with some chance of
experimental testing. The great advantage of this tech-
nique is that the mechanical searching for precise
N-beam orientions, which pushes the limit of feasibility
and makes experiments tedious and difficult, is avoided.
Use of approximate orientations would now suffice,
given wide beam divergences of around 100 mrad, which
will then cover the exact three-beam point somewhere in
the diffraction disc in the three-beam case, and allows
contemplation of the much more exotic aim of studying
a six-beam interaction as in Fig. 3(c), only computed by
the Pendellosung technique in this paper, with rather
negative results. A future study by DBXRAD would not
necessarily be so negative.

We chose thicknesses sufficiently great that the
intensity fills as much of the aperture field as possible,
with an aperture subtending approximately 90 mrad at
the crystal for a-quartz, while for Oss(CO) this angle is
140 mrad. This corresponds to an excitation-error range
of Ak =0.07 for o-quartz, and of Ak =0.01 for
Os5(CO) ;6. These calculations were made for a thick-
ness value of 10° unit cells, which, for calculations
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involving slice depths of 1/3c (where c is the long unit-
cell axis defined as the trigonal projection axis), gives a
crystal thickness for a-quartz (Wykoff, 1948) of 0.54 mm,
and, for Oss(CO);¢ (Reichert & Sheldrick, 1977), a
crystal thickness of around 2.5 mm.

These conditions have led to diffracted-beam inten-
sities, expressed as fractions of the normalized incident
beam taken as unity, of 1077 to 1078 for a-quartz and
107® to 10~ for Oss(CO);6.

5.2. Symmetries expected from DBXRAD patterns for
space groups Nos. 152 and 154

An examination of structure factors for the g and &
reflections 101/ and 110/ for the enantiomorphs, using
space groups Nos. 152 and 154 from International Tables
for Crystallography (Hahn, 1987), abbreviated as ITA87,
but using the structure-factor relationships only avail-
able in IT52 (Henry & Lonsdale, 1952), shows:

152 _ 154 152 _ 154
Ay = Ay By = "By
and
152 154 152 154
Ap £ 7 Apgas By # 7 By

This can be summarized as '32F,,, = 13F,,, for the
projected structure and

152Fhkl — 154Fhk7[

ey

for the upper and lower layer lines normally defined as
having / integral, although non-integral values of / apply
for points sampled at =Ak of Moodie’s dynamic shape
transform (Moodie, 1972b) above and below the zero-
layer reflections.
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_Further to this, in considering the first-order 1017 and
110/ reflections, abbreviated to g and 4 reflections, we
can derive the conditions

154 _ 154 154 _ 154
Ay = 7 Apiy and Bkt = 7 Byt

giving the conclusions
154 _ 154 152 _ 132
Fui = " Fpq—y  and Fuir = Fuiy- - (2)

Equations (1) and (2) will predictably lead to certain
DBXRAD pattern symmetries provided the vector
nature of the radiation is taken into account through use
of the o bases.

5.3. Geometries to be avoided for chirality determination

Eqations (1) and (2) introduce certain symmetries
into the dynamic X-ray pattern. Reciprocity introduces
additional symmetries dependent upon the existence of
certain symmetry elements in the space group. Reci-
procity involves a 180° rotation of the Ewald construc-
tion around the diffracting vector Ak (Moodie, 1972b).
Mooodie’s results relate to HEED. Figs. 6(a) and (b)
show how reciprocity, which we now understand in
terms of individual ‘particle’ states (Goodman &
Gunning, 1992), behaves for photons as compared with
HEED. Unlike HEED, using CBED, where these
symmetries are useful in determining space group when
detecting chirality and distinguishing its hand by means
of specific pattern asymmetries with X-rays, we have to
take the conditions producing these symmetries into
account. They can be considered as conditions to be
avoided as obscuring precisely the effects we wish to
exploit.
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Fig. 5. Results similar to those of Fig. 3 for the Os5(CO);¢ structure using Ta Ko, radiation and Ak, values of 30.1.
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Fig. 6(a) shows the reciprocity relationship as derived
for electron diffraction, with the 180° rotation about Ak
included. We have added to the k™ and k°Y" vector
polarization states, which are different for input and
output beams, distinguished by dashed- and full-line
arrows. The vertical Z axis is unique in that it is the
propagation axis, but the sign choice is arbitrary; here

| i
| ]
| |
o
AN
A N
N\
\
(@) (b)
i
!
|
1
\ /
\
\
X

©

Fig. 6. (a) Diagram showing input and output beams, with full- and
dashed-line arrows indicating different o states, o* and o7,
respectively. (b) Diagram showing the two operations needed to
(1) create the reciprocity diagram, indicated by a twofold rotation of
180° about the Ak vector (operator encircled), followed by a second
twofold rotation, (ii) required to bring the reciprocally related
beams into a realizable orientation for practical application in
laboratory coordinates. (¢) Diagram showing how a mirror
reflection, which acts on the chiral crystal structure and input and
output radiations, will give identical intensities for the transmitted
beams.
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we take Z as positive for the direction of the entrance-
surface normal. In order to make the reciprocity rela-
tionship useable in the laboratory, we need to apply
some symmetry element of the structure to invert the
reciprocity ray paths. For space groups Nos. 152 and 154,
we have twofold diad axes normal to Z (see figures on
pp- 500 and 504 of ITA87), which when applied to this
diagram produces the result shown in Fig. 6(b).

This result implies that for a fixed space group, say
No. 152 or 154, interchanging both the polarizer and
analyser will result in identical intensity distributions in
the analysed output beam and the DBXRAD patterns
will be identical.

Another result is obtained directly without invoking
reciprocity. Mirror-reflecting the whole diagram, which
will mean reversing both the k™ and k°Y" o states as
well as the structural handedness, will also yield identical
intensities. This mirror effect is shown in Fig. 6(c).

A simple method of avoiding these conditions is to
follow the momentum geometry of these diagrams with
a fixed input polarization o; and analyse for another
fixed state 0,. However, a more positive outcome is that,
when the two symmetries shown in Fig. 6 are combined,
we see that instead of changing the crystal hand in the
beam, which would involve mounting a separate
specimen, we can achieve the same result by exchanging
only the o states of input and output to obtain the same
results, and hence examine the result of changing
structural hand with the goniometer left in place.

Fig. 7. Set of DBXRAD patterns, indicated as (a)—(d) in clockwise
rotation from the upper left, showing results obtained for the
average potential, using one slice per unit cell, for a-quartz with Mo
Ko radiation. (a), (b) and (c), (d) show the DBXRAD patterns for
the 1010 and 0110 (g and &) reflections (upper and lower rows,
respectively) for the symmetrical three-beam case of Fig. 4(a), with
o™ incident and 6" and 6~ out. The columns in (a) and (c) are for
o~ out and the column of (b) and (d) are for o out. The labellings
+ and — on the disc edges indicate points for +Ak and —Ak values
along the line normal to the bright central band for which Ak = 0.



254

5.4. Results obtained by DBXRAD pattern simulations

Figs. 7, 8 and 9 show three-dimensional diffraction
intensity distributions in DBXRAD disc form, for
beams g and 4 in the three-beam 0, g, & equilateral
triangle, under different combinations of entrance and
exit radiations, and for differences between the enan-
tiomorphs. These discs also show the effects of reversal
of excitation error, for Ak values, which changes
linearly (to a good approximation) along the trajectory
normal to the central bright band and through its central
Bragg point. The signs + and — at the disc edges indi-
cate the two extreme ends of this trajectory, sampling
the dynamic shape transform at equal distances above
and below the Bragg point.

Fig. 7 shows results obtained for the projected
a-quartz structure with Mo Ko, radiation, for which the
single-unit-cell projection is used for the slice thickness
with vacuum propagation between slices, to 0.54 mm
thickness. Notable here is the exact mirror relationship
shown between the g and & beams for both o+ and o~
output (with ot input), labelled states 2 and 3, and 4 and
5 according to Fig. 1. This calculation shows that without
handedness we obtain the symmetry P31m by effectively
computing for only the zero-layer reflections 1010 and
1100 [see also equation (2) above]. Note that this leads
to a translational relationship between the beams in
horizontal rows, i.e. between the pair of beams g and &
separately, when analysed for o™ and o~ states (states 2
and 5, and 3 and 6, respectively, following Fig. 1).

Next, we made a simulation using 1/3 unit-cell slices
and propagation between, to the same thickness, using a

. . . : j i /6
C Ny

Fig. 8. (a) to (d), numbered and labelled in the same way and for the
same three-beam case as in Fig. 7, show results obtained when using
45° linear polarization input (see text). The loss of exact mirror
relationship is shown by arrows from the breakdown feature in the
discs, using the symbol #to indicate mirror breakdown.
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linear polarization at 45° to the set of g planes, which
means that it can be either 15 or 75° to either the g or the
h planes of the triangle. This follows the idea of Skalicky
& Malgrange (1972), who were however using the two-
beam case. The three-beam equilateral triangular
geometry, however, has quite different symmetry prop-
erties to the one-dimensional two-beam interaction and
this initial polarization mix gives rise to an imbalance
in the clockwise and anticlockwise loops of cyclic
geometry. This simulation is shown in Fig. 8 for a-quartz
for the same crystal thickness and wavelength used for
Fig. 9. What is noticeable here is the precise transla-
tional relationship between beam pairs 2 and 5, and 3
and 6, and, secondly, the breakdown of mirror symmetry
between the g and & beams, 2 and 3, and 5 and 6.

These two features can now be interpreted directly.
The translational relationship found in the two rows of
discs can be understood from equation (2) above,
showing the equality of points representing +Ak of g to
—AKk of h. This relates directly to the situation found by
reciprocity in HEED for identification of centrosym-
metry (Goodman, 1975), making use of the reciprocity
diagram given by Moodie (1972b).

Of interest here is the number of cyclic terms, corre-
sponding to any path in a Moodie scattering diagram
(Moodie, 1980-1985), which starts at 0 and follows the
triangle in the order 0, g, & or 0, A, g, being clockwise or
anticlockwise depending on the choice of the positions
of g and £ in the triangle. We collectively call these cyclic
terms. Terms that do not complete at least one circuit,
leaving one side of the triangle empty, are called
noncyclic. This is a diagramatic way of interpreting the
Born series. With n as the order of each term, for n = 3
the cycle will finish at 0, so to finish at g with n > 1 and

Fig. 9. DBXRAD results for the Oss(CO)¢ structure and Ta Ko,
radiation for the three-beam case with o incident and ot and o~
out, labelled in the same manner as in Fig. 7.
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Table 2. The Born series with cyclic terms that may be factored (see text)

n=4
C 1 [A]+ (B’ + D)
C | [A]+(B*+ D)

n=>5
C 1 [B+ D]+ (B*+ A)+ (A® + D?)
C | [B+ D]+ (B*+ A) + (A> + D?)

n==~6
C 1 [A*]+ (A" + BD) + (B’ + D)
C | [A®]+(A* + BD) + (B° + D)

n=17

C 1 [A]+ A7 + (B? + A%) + (A® + D) + (B* + D* + BD)

C 1t CH[A]l+ A7 + (B> + A) + (A + D*) + (B* + D> + BD)
C| Cl[A]l+ A"+ (B> + A%) + (A° + D?) + (B? + D* + BD)

gives the numerator terms in the Born series for n (without the n! divisors) in the range 4 — 7, for multiple scatterings to g, where C represents
cyclic paths of two classes, C? and CJ, for clockwise and anticlockwise triangular cycles, and C1 represents a second-order cycle with both these
superposed. Then A, B and D (rather than C, already in use) represent the three sides of the equilateral triangle, the noncyclic paths then being
classified according to those paths along the sides of the triangle which are filled, and to what order. As C" = I, the unit matrix, we have the series
(after factoring out these unit matrix terms)

n=1 n=2 n=3 n==4 n=>5
A (BD)/2! (A% + B2A + AD?)/3! (A’BD + BD? + B>D) /4! (A% + A’D?> + AD* + B*A3 + B*A)/5!
n==~6 n=7

(B°D + B*D? + BD® + A*D?)/6! (A7 + AD? + A’D* + AD® + B°A + B*A’ + B*A%)/7!

n=3§8
(B'D + B3D® + B*D’ + BD")/8!

n=9
(A9 + A'D? + ASD* + A3D° + AD8 + B°A3 + B*A° + B*A")/9!

representing the structure-factor component of the N-beam series for ,, which must then include the excitation error series in ¢, in order to give
the result for v, (Cowley & Moodie, 1962). For n > 1, the cross-product terms introduce a dependence on kinematic phase into the expression for
¥y, The ratio m/p, where p is the total number of paths for a given n and m is the number cyclic paths, increases much more slowly than », and
unevenly, with jumps at each increase in power of C, so that the cyclic paths will tend to dominate at high n values (see text), the values for
n=2,3,4,5,6,7,8,9 for the above ratio being 0/1,1/6,1/6,1/8,2/10,2/13,2/10, 3/14 etc., showing this trend, with the increased terms of the

series for n > 2 underlined to highlight this uneven and step-wise progress with 7.

include these terms we must have n > 3. The ratio m/p,
where m is the number cyclic terms and p is the total
number of paths to g increases much more slowly
than n, and in an uneven fashion, for n =2, 3, 4,
5, 6, 7, 8 9 the corresponding ratios m/p being
0/1,1/6,1/6,1/8,2/10,2/13,2/10,3/14 etc. Since for
X-rays the complete Born series should be much more
rapidly convergent than for electrons, this subset of the
complete Born series could predictively lead to a
detectable degree of chiral interaction between radia-
tion and structure for sufficient thicknesses, as found in
our simulations. As shown in Table 2, the cyclic paths
may be factored out and behave as unit matrices of
order 2, allowing factorization in terms of the Pauli
matrices. This makes the influence of chirality more
transparent.

It is a good idea in principle if we want to distinguish
structural hand to give an imbalance at the entrance face
by using the linear 45° state for one set of planes as
noted above, since the initial conditions regarding phase
are carried through several micrometres in transmission
and must affect the end result even after several mm.
This is one way of biasing either clockwise or anti-
clockwise cyclic paths, which with a pure o~ or o™
entrance state would be in balance, and should lead to
either enhanced or reduced interaction with a structure
of particular hand. However, the results do not parti-
cularly show this to be the case, but do demonstrate that

there is nothing to be gained by using pure o states as
compared with the linear 45° state as input.

Finally, in Fig. 9, we show the symmetries obtained for
the Os5(CO);4 using Ta Koy radiation for space group
No. 152 for fixed 0" input and for both o% and o~
outputs. The most noticeable difference here from Fig. 8
is the obviously greater intensity displayed in the left-
hand and right-hand diagrams — a feature of Fig. 8 was
the evenness of both rows — the brighter of the beams in
Fig. 9 being the o™ exit beams, or beams 2 and 3 for the
double triangle. This illustrates that chiral interaction
between radiation and structure will give enhanced
transmission when both chiralities match (a not unex-
pected result). Apart from this, we have now lost the
translational symmetry discussed above, but retained, to
very good approximation, the mirror symmetry between
the g and & rows. The only place where mirror break-
down can be seen is at the exact line of the bright and
dark Kossel lines, which represents the trace of the
condition for exact Bragg condition for the third beam.
Actually, this is also the case in Fig. 9, but occupies much
more prominence there.

The conclusion we draw from these results is that use
of the heavy atom osmium is no help in detecting chiral
effects by the DBXRAD method and that use of the
experimentally simpler 45° of linear polarization as
input is all that is required for the determination of
crystal hand in this way.
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6. Suggested experimental procedures

Because of the very weak beams we are examining in the
CBXRAD technique and the requirement for polarized
X-rays, synchrotron radiation was a natural choice for
any experimental observation of the symmetry rela-
tionships we predicted by the above computations.
Then, the technique described by Balaic er al. (1996)
shows that, at least for soft X-rays (up to say the Mo Ko,
wavelength), it is possible to produce a focus some mm
from the exit of the capillary. This would allow space for
the sample, controlled by a goniometer, and, as has been
demonstrated by the above authors, this has produced
disc-shaped diffraction orders at some distance from the
sample at the focal point (or back-focal plane). In order
to simulate the conditions of LACBED, we would also
need to insert a circular aperture in the back-focal plane
of such dimensions as to eliminate all diffuse scattering
in neighbouring reciprocal space, and tightly define the
particular diffraction order of interest. This has been
effective in LACBED in eliminating almost all diffuse
scattering from the required pattern structure consisting
of Kossel- (or Kikuchi-) line and band detail, especially
that due to TDS, which tends to be high-angle scattering.
This would also be an essential component of any
CBXRAD experiment, since we calculate only for
elastically scattered X-rays, although with anomalous
absorption included.

However, there are two problems with the type of
focus achieved by the above authors. One is that the
focus is highly concentrated around the directly trans-
mitted ray and falls off rapidly across the disc from the
centre outwards. In addition, we do not know how much
of the initial linear polarization is retained by these
capillaries. Another problem is that the type of glass
used by them would not suit such hard radiation as
Ta Ko,; fortunately, we have demonstrated that the
softer Mo Ko, radiation already tested with capillary
focusing is all that is required for our purposes.

Bilderback et al. (1994) have suggested the use of
lead glass for hard radiation, which carries with it an
increased fluorescence from the capillary together with
less-efficient central focusing. This fluorescence may in
fact be a factor that would spread the radiation more
evenly across the outgoing disc but would also lead to
degradation of the polarization state. Clearly, more
experimental work needs to be performed on testing
different capillary designs to determine conditions most
suitable for CBXRAD work.

It is interesting that, from what we have found from
simulations, use of high atomic number elements,
heavier than Si, does not help DBXRAD determina-
tions, even though Pendellosung fringe results indicate
enantiomorphic separation is greater for heavier ma-
terial, which leaves open the possibility for examining
even lighter atom structures such as organic compounds
by the new method.

X-RAY MULTISLICE COMPUTATION

7. Discussion

The main conclusion we have reached is that enantio-
morphic space-group pairs can be distinguished by
means of dynamic single-crystal X-ray diffraction, and
that a linearly polarized beam is all that is required. This
latter conclusion was entirely unexpected when we
started this investigation, but mature consideration has
led us to believe that both theory and simulation, and
hopefully experimental testing to follow, are at present
in good agreement on this matter.

At a more basic level, there is an interest in the
symmetrical three-beam problem in X-ray diffraction,
long considered though not published (to our knowl-
edge) by Professor A. F. Moodie (see however Moodie
et al., 1996). There is indeed some comparison to be
made between this triangular scattering loop, which
transmits 0" radiation much more strongly into the
crystal of similar hand (P3;21) than o~, and the opera-
tion of a three-phase motor, which will only start in a
particular direction. The difference here is essentially
the difference between two- and three-dimensional
problems.

Another question bound to be asked is, is this
detection of chirality by X-rays purely abstract, consid-
ering that the same distinctions can much more readily
be made with visible light? We are strongly of the
opinion that this testing of phenomena known in the
visible optics region in the X-ray wavelength region
establishes important points in scattering theory, which
we already feel assured will lead to other and better
formulations of the dynamic theory of X-rays. Some of
us (Goodman and Chantler) have started, as a conse-
quence of the present work, on a new formulation for
dynamic X-ray scattering.

Since this work has been contemplated for some
years, we found that, before the present work, in any
group of theoretical physicists in which this question was
raised, the majority have said ‘this will never work’,
while a minority have said ‘the results will be positive
but that is so obvious that it is not worth investigating’. It
was this situation that led us to decide that it was worth
going ahead with a relatively simple numerical test.

We would like to conclude on a positive note by
paying tribute to the life-long and highly original
personal theoretical thought put in by A. F. Moodie over
a period of 40 years, which continues in 1998, and from
whom those who were lucky enough to have him as
supervisor for a period have learnt so much basic scat-
tering physics. Typically of this scientist, most of his work
was blackboarded as private discussion, and never
published. We can only wish him a continuing and
outstanding future.
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